Техиическая спецификация на ванну для электролитно-нлазменной обработки (Лот 2)

Общие требования

1. Назначение и область применения ваниы для электролитно-плазменной обработки

- упрочнения конструкционных материалов от источника питания импульсным быполярным напряжением и током в технологической ваине установки ЭПМ 1.1. Рабочая ванна для электролитно-плазменной обработки технологической установки электролитно-плазменной модификации (ЭПМ) предназначен для химико-термического
- термического упрочнения материала 1.2. В Рабочей ванне для электролитно-плазменной обработки осуществляет преобразование энергии трехфазной сетн переменного тока частотой 50 Гц в тепловую энергию для 1.3. Основной функцией рабочей ванны является циркулирование электролита в рабочий орган сопла и в резервуар через трубопроводы и насоса при импульсном возбуждении
- 1.4. Рабочей средой для ванны является электролит.

электролитной плазмы.

2. Техиические требования для ванны для электролитно-плазменной обработки

- 2.1. Рабочая ванна должна быть герметичной для электролита и выполнена из диэлектрического материала
- 2.2. В рабочей ванне должна быть обеспечена гальваническая развязка нагрузки и питающей сети.
- 2.3. Основные параметры к рабочей ванне для электролитно-плазменной обработки должны соответствовать значениям, приведенным в таблице 1. Таблица I — Технические характеристики материала ваины

Adpantephernika	значение
Плотность материала, кг/м³	11001200
Температура эксплуатации, °С	-60100
Коэффициент теплопроводности, Вт/(м·К)	0,190,3
Коэффициент линейного расширения, К-1	7-10-59-10-5
Удельная теплота сгорания, МДж/кг	27,7
Температура размягчения по Вика, °С	90133
Теплостойкость по Мартенсу, °С	8895
Морозостойкость, °С	-50
Линейная усадка, %	3,55
Ударная вязкость, кДж/м ²	7,813
Прочность на разрыв, МПа	61,770
Прочность на растяжение, МПа	40
Прочность на сжатие, МПа	70
Прочность на изгиб, МПа	140
Модуль упругости при растяжении, МПа	2870
Твердость но Бринеллю, МПа	170180
Коэффициент светопропускания, %	более 88
Удельное электрическое сопротивление, Ом см	1015
Электрическая прочность, МВ м	27

2.1 Параметры рабочей ванны для электролитно-плазменной обработки.

- 2.1.1. На поверхности ванны для электролитно-плазменной обработки не допускается наличие:
- посторонних включений размером более 3 мм;
- внутренних воздушных пузырей диаметром более 1 мм;
- грубых царапин и сколов;

- поверхностных наплывов и трещин;
- сколов, щербин и зазубрин длиной более 4 мм с торца листа.

Размеры и допуски ванны для электролитно-плазменной обработки, приведены на рисунке 1.

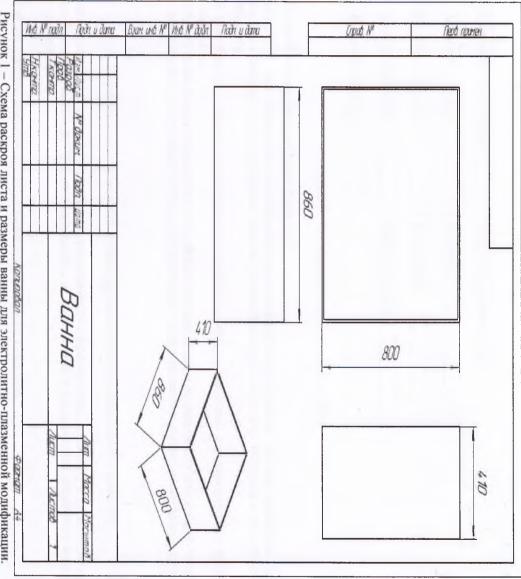


Рисунок I — Схема раскроя листа и размеры ванны для электролитно-плазменной модификации.

- 2.1.2. Материал ванны должен, иметь диапазон плотности от 1100 до 1200 кг/м³ и рабочую температуру от минус 60 до 100 градусов Цельсия. Этот материал, как и другие полимеры, не проводит электрический ток, обладает низкой теплопроводностью
- 2.2. Требования к герметичности и Рh стойкости ванны для электролитно-плазменной обработки

на рисунке 2. 2.2.1 В рабочей ванне будут использованы различные электролиты для электролитно-плазменной обработки. Классификация электролитов используемых в ванне приведена

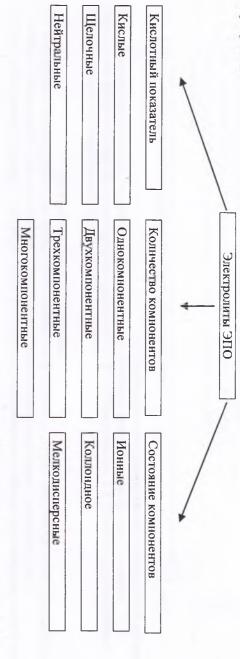


Рисунок 2 - Классификация электролитов ЭПМ.

Электролит для ЭПМ будет выбраться исходя из следующих соображений:

- установки электролитно-плазменной обработки дальнейшем при работе с электролитом были иайдены технологические решения, обеспечивающие отсутствие выбросов в атмосферу и высокие экологические показатели Отсутствие токсичных соединений, при проведении процесса электролитно-плазменного разряда данные соединения не образуют токсичных соединений. В
- насыщение поверхности треоуемыми элементами. Близкие значения вязкости электролита и удельного электрического сопротивления по сравнению с интересующими нас электролитами, способными проводить
- емкостный характер. детали (катод) и противоэлектроды из нержавеющей стали (анод). Нагрузка на протяжении всего процесса электролитно-плазменной обработки нелинейна и носит активно Электролитическая диэлектрическая ванна, которая заполнена слабощелочным водным раствором электролита (рН10), и в который погружены обрабатываемые

2.3 Требования безопасности ванны для электролитно-плазменной обработки.

- установки электролитно-плазменного упрочнения. бнологические вещества, радиоактивные элементы, газы и др. Технология основана на термических и механических обработках металлов с иснользованием проектируемой 2.3.1 Ванна для электролитно-плазменной обработки нолностью обеспечивает экологическую безопасность, поскольку в технологии не используются вредные химические и
- 2.3.2 Ванна должна быть диэлектрической для рабочих днапазонов ЭПМ в пределах указаиные в Таблице 2.

Таблица 2 – Параметры режима работы ЭПМ в диэлектрической ванне.

0,22		:
22	Максимальная выхольяя монность кВт не более	-
значения	Наименование параметра	n/n
Номинал		No

_	_	_	_	_	_	
7.		6	5.	4.	3.	2.
Время цикла электролитно-плазменной молификации, мин.	1 CANTINI PROCEEDS	Режим паботы	Максимальный пиковый ток в катодной цепи, А, в течение не более 1 с	Максимальный пиковый ток в анодной цепи, А, в течение не более 1 с	Максимальный ток в катодной цепи, А (среднее значение), не боле	Максимальный ток в анодной цепи, А (среднее значение), не более
0т 5 ло 60	ный	Продолжитель	286	286	80	80

2.4 Требования по устойчивости к внешним воздействиям

- 2.4.1. Ванна для электролитно-плазменной обработки должна эксплуатироваться в следующих условиях:
- воздействие климатических факторов внешней среды по ГОСТ 15150 исполнение УХЛ, категория размещения 4;
- рабочая температура окружающей среды от +1° С до + 40° С.

2.5 Требования к конструкции.

- к источнику питания ИП, с выходными характеристиками, приведенными в таблице 2, ие более 1,5 м. 2.5.1 Конструкция корпуса ванны для электролитно-плазменной обработки должна обеспечивать его расположение в неносредственной близости к резервуару для электролита и
- 2.5.2 При компоновке и монтаже к установке ЭПМ допускается технологически необходимые изменения конструкции

3. Требования к маркировке и комплектности.

3.1. Комплектность поставки ванны с составными частями и документацией должна соответствовать таблице 3

Таблица 3 — Комплектность ванны для электролитно-плазменной обработки

N/N	Наименование	Количеств
-	Ванна	1
2.	Паспорт	1
Ç.	Руководство по эксплуатации (РЭ)	1

Председатель нравления - ректор

Проректор по НИД и Ц

Руководитель темы

Условия оплаты: по факту поставки. Стоимость указана с НДС на условиях DDP (с доставкой до покупателя и включает в себя все возможные платежи, налоги и пошлины) г. Усть-Каменогорск.

Срок поставки: 20 календарных дней с момента подписания договора